Search results for "Small Molecule Librarie"

showing 10 items of 38 documents

An Integrated Pharmacophore/Docking/3D-QSAR Approach to Screening a Large Library of Products in Search of Future Botulinum Neurotoxin A Inhibitors

2020

Botulinum toxins are neurotoxins produced by Clostridium botulinum. This toxin can be lethal for humans as a cause of botulism

0301 basic medicineModels MolecularBotulinum ToxinsDatabases FactualNeuromuscular transmissionQuantitative Structure-Activity RelationshipPharmacologymedicine.disease_cause01 natural sciencesType Alcsh:ChemistryModelsClostridium botulinumbotulinum neurotoxin ABotulismBotulinum Toxins Type Alcsh:QH301-705.5Spectroscopyfood and beveragesGeneral MedicineBotulinum neurotoxinComputer Science ApplicationsdockingPharmacophoreQuantitative structure–activity relationshipStatic ElectricityChemicalbotulinum neurotoxin A virtual screening docking 3D-QSAR molecular dynamicsMolecular Dynamics SimulationArticleCatalysisInorganic ChemistrySmall Molecule Libraries03 medical and health sciencesDatabasesmedicinePhysical and Theoretical ChemistryMolecular BiologyFactual3D-QSARVirtual screening010405 organic chemistrybusiness.industryfungiOrganic ChemistryMolecularHydrogen Bondingmedicine.diseasevirtual screeningmolecular dynamics0104 chemical sciences030104 developmental biologyModels Chemicallcsh:Biology (General)lcsh:QD1-999Docking (molecular)Clostridium botulinumbusinessInternational Journal of Molecular Sciences
researchProduct

Identification of estrogen receptor α ligands with virtual screening techniques.

2016

Utilization of computer-aided molecular discovery methods in virtual screening (VS) is a cost-effective approach to identify novel bioactive small molecules. Unfortunately, no universal VS strategy can guarantee high hit rates for all biological targets, but each target requires distinct, fine-tuned solutions. Here, we have studied in retrospective manner the effectiveness and usefulness of common pharmacophore hypothesis, molecular docking and negative image-based screening as potential VS tools for a widely applied drug discovery target, estrogen receptor α (ERα). The comparison of the methods helps to demonstrate the differences in their ability to identify active molecules. For example,…

0301 basic medicineModels MolecularQuantitative structure–activity relationshipMolecular ConformationQuantitative Structure-Activity RelationshipComputational biologyMolecular Dynamics Simulationta3111BioinformaticsLigands01 natural sciencesMolecular Docking SimulationSmall Molecule Libraries03 medical and health sciencesestrogen receptor alphaDrug DiscoveryMaterials ChemistryHumansComputer SimulationPhysical and Theoretical ChemistrySpectroscopy3D-QSARVirtual screeningDrug discoveryChemistryta1182Estrogen Receptor alphaSmall Molecule LibrariesReproducibility of Resultsmolecular dockingvirtual screeningComputer Graphics and Computer-Aided DesignSmall molecule0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistry030104 developmental biologyArea Under Curvepharmacophore modelingligand discoverynegative imagePharmacophoreEstrogen receptor alphaJournal of molecular graphicsmodelling
researchProduct

In silico discovery of substituted pyrido[2,3-d]pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models

2016

Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approach…

0301 basic medicineMolecular biologyPhysiologyMutantMyotonic dystrophyDruggabilitylcsh:Medicine01 natural sciencesBiochemistryPhysical ChemistryMyoblastschemistry.chemical_compoundAnabolic AgentsMedicaments--InteraccióAnimal CellsDrug DiscoveryMedicine and Health SciencesMBNL1Drosophila ProteinsMyotonic Dystrophylcsh:ScienceRNA structureConnective Tissue CellsMultidisciplinaryMolecular StructureOrganic CompoundsStem CellsPhysicsRNA-Binding ProteinsBiological activityPhenotypeClimbingMolecular Docking SimulationNucleic acidsChemistryDrosophila melanogasterBiochemistryGenetic DiseasesConnective TissueRNA splicingPhysical SciencesCellular TypesAnatomyLocomotion57 - BiologiaSignal TransductionResearch ArticleBiotechnologyHydrogen bondingcongenital hereditary and neonatal diseases and abnormalitiesIn silicoPrimary Cell CultureComputational biologyBiology010402 general chemistryMyotonic dystrophyMyotonin-Protein KinaseDrug interactionsSmall Molecule Libraries03 medical and health sciencesStructure-Activity RelationshipmedicineAnimalsHumansRNA MessengerEnllaços d'hidrogenClinical GeneticsChemical PhysicsBiology and life sciencesChemical BondingBiological Locomotionlcsh:ROrganic ChemistryEstructura molecularChemical CompoundsHydrogen BondingCell BiologyFibroblastsmedicine.disease0104 chemical sciencesBenzamidinesAlternative SplicingDisease Models AnimalMacromolecular structure analysis030104 developmental biologyPyrimidinesBiological TissuechemistrySmall MoleculesRNAlcsh:QTrinucleotide Repeat ExpansionMolecular structure
researchProduct

Targeting Bacterial Sortase A with Covalent Inhibitors: 27 New Starting Points for Structure-Based Hit-to-Lead Optimization.

2019

Because of its essential role as a bacterial virulence factor, enzyme sortase A (SrtA) has become an attractive target for the development of new antivirulence drugs against Gram-positive infections. Here we describe 27 compounds identified as covalent inhibitors of

0301 basic medicineStaphylococcus aureusMagnetic Resonance SpectroscopyAntivirulenceVirulence Factors030106 microbiologySmall Molecule Libraries03 medical and health sciencesMiceBacterial ProteinsCatalytic DomainDrug DiscoveryAnimalschemistry.chemical_classificationBinding SitesChemistryHit to leadFibroblastsAminoacyltransferasesAnti-Bacterial AgentsMolecular Docking SimulationCysteine Endopeptidases030104 developmental biologyInfectious DiseasesEnzymeBiochemistryCovalent bondSortase ABacterial virulenceNIH 3T3 CellsStructure basedACS infectious diseases
researchProduct

Modulating disease-relevant tau oligomeric strains by small molecules

2020

The pathological aggregation of tau plays an important role in Alzheimer's disease and many other related neurodegenerative diseases, collectively referred to as tauopathies. Recent evidence has demonstrated that tau oligomers, small and soluble prefibrillar aggregates, are highly toxic due to their strong ability to seed tau misfolding and propagate the pathology seen across different neurodegenerative diseases. We previously showed that novel curcumin derivatives affect preformed tau oligomer aggregation pathways by promoting the formation of more aggregated and nontoxic tau aggregates. To further investigate their therapeutic potential, we have extended our studies o disease-relevant bra…

0301 basic medicinetau oligomeric strainsCurcuminTau proteinsmall moleculetau ProteinsProtein aggregationBiochemistrytau proteinoligomerProgressive supranuclear palsyprotein aggregationDiagnosis DifferentialSmall Molecule Libraries03 medical and health scienceschemistry.chemical_compoundBiopolymersmental disordersmedicineHumansMolecular BiologyCells CulturedNeurons030102 biochemistry & molecular biologybiologyChemistryDementia with Lewy bodiesbrain-derived tau oligomerstau aggregationtauopathytoxicityBrainMolecular Bases of DiseaseCell Biologymedicine.diseaseSmall moleculeImaging agentCell biology030104 developmental biologyTauopathiesbiology.proteinCurcuminTauopathyThe Journal of Biological Chemistry
researchProduct

A Bimolecular Multicellular Complementation System for the Detection of Syncytium Formation: A New Methodology for the Identification of Nipah Virus …

2019

Fusion of viral and cellular membranes is a key step during the viral life cycle. Enveloped viruses trigger this process by means of specialized viral proteins expressed on their surface, the so-called viral fusion proteins. There are multiple assays to analyze the viral entry including those that focus on the cell-cell fusion induced by some viral proteins. These methods often rely on the identification of multinucleated cells (syncytium) as a result of cell membrane fusions. In this manuscript, we describe a novel methodology for the study of cell-cell fusion. Our approach, named Bimolecular Multicellular Complementation (BiMuC), provides an adjustable platform to qualitatively and quanti…

0301 basic medicinevirusesmembrane fusionlcsh:QR1-502virusNipah virusBiologyGiant Cells01 natural scienceslcsh:MicrobiologySmall Molecule Libraries03 medical and health sciencesVirus entryViral envelopeViral life cycleViral entryVirologyDrug DiscoveryHumansSyncytiumDrug discoveryBrief ReportbiomolèculesHigh-throughput screeningLipid bilayer fusionVirus InternalizationFusion proteinHigh-Throughput Screening Assays0104 chemical sciencesCell biologyBimolecular complementation010404 medicinal & biomolecular chemistryMulticellular organismHEK293 Cells030104 developmental biologyInfectious DiseasesViruses
researchProduct

Inhibition of tumor angiogenesis by antibodies, synthetic small molecules and natural products.

2011

Cancer remains one of the major causes of death worldwide. The switch to pathological angiogenesis is a key process in the promotion of cancer and consequently provides several new and promising targets to anticancer therapy. Thus, antagonizing angiogenesis cuts off the tumor's oxygen and nutrition supply. This review focuses on angiogenesis inhibitors as option for cancer treatment. Modes of action, adverse effects, mechanisms of resistance as well as new developments are highlighted. One approach in angiogenesis inhibition is intermitting the further VEGF (vascular endothelial growth factor) signal pathway with monoclonal antibodies. Bevacizumab is a highly specific recombinant humanized …

Angiogenesismedicine.drug_classGenisteinAngiogenesis InhibitorsAntineoplastic AgentsBiologyPharmacologyMonoclonal antibodyBiochemistryReceptor tyrosine kinaseNeovascularizationSmall Molecule Librarieschemistry.chemical_compoundGrowth factor receptorNeoplasmsDrug DiscoverymedicineAnimalsHumansPharmacologyBiological ProductsNeovascularization PathologicVascular Endothelial Growth FactorsOrganic ChemistryCancerAntibodies Monoclonalmedicine.diseaseAntineoplastic Agents PhytogenicVascular endothelial growth factorchemistrybiology.proteinMolecular Medicinemedicine.symptomCurrent medicinal chemistry
researchProduct

Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance

2018

Abstract Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. I…

Antibiotic resistancemedicine.drug_classAntibioticsMicrobial Sensitivity TestsBacterial growthDispersal agent01 natural sciencesVirulence factorMicrobiologySmall Molecule LibrariesStructure-Activity Relationship03 medical and health sciencesAntibiotic resistanceSmall Molecule LibrarieAnti-Bacterial AgentDrug Discoverymedicine030304 developmental biologyPharmacology0303 health sciencesBacteriaDose-Response Relationship DrugMolecular StructureMicrobial Sensitivity Test010405 organic chemistryChemistryBiofilmOrganic ChemistryBiofilmDrug Resistance MicrobialGeneral Medicinebiochemical phenomena metabolism and nutritionAnti-biofilm agentSettore CHIM/08 - Chimica FarmaceuticaSmall moleculeAnti-Bacterial Agents0104 chemical sciencesAnti-adhesion agentBiofilmsAnti-virulence compoundAnti biofilmEuropean Journal of Medicinal Chemistry
researchProduct

Solution versus Fluorous versus Solid-Phase Synthesis of 2,5-Disubstituted 1,3-Azoles. Preliminary Antibacterial Activity Studies

2009

A small library of compounds with an oxa(thia)zole scaffold and structural diversity in both positions 2 and 5 has been synthesized. Double acylation of a protected glycine affords intermediate α-amido-β-ketoesters, which in turn can be dehydrated to afford 1,3-oxazoles or reacted with Lawesson’s reagent to furnish 1,3-thiazoles. This procedure was designed with its adaptation to fluorous techniques in mind. Thus, when a protected glycine with a fluorous tag in the ester moiety is used as a starting material, the synthesis can be easily completed without column chromatography purification of intermediate compounds with good to excellent yields, thus affording a suitable entry to the prepara…

AzolesStaphylococcus aureusANTIBACTERIAL ACTIVITYDrug Evaluation PreclinicalMicrobial Sensitivity TestsChemical synthesisSmall Molecule LibrariesAcylationchemistry.chemical_compoundSolid-phase synthesisColumn chromatographyAZOLESOrganic chemistryMoietyAntibacterial agentChemistryOrganic ChemistryCiencias QuímicasFLUOROUSCombinatorial chemistryAnti-Bacterial AgentsSolutionsQuímica OrgánicaMolecular ProbesSOLID-PHASELawesson's reagentAntibacterial activityCIENCIAS NATURALES Y EXACTAS
researchProduct

De novo design of protein kinase inhibitors by in silico identification of hinge region-binding fragments.

2013

Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible w…

Binding SitesMolecular StructureProtein ConformationIntracellular Signaling Peptides and ProteinsArticlesProtein Serine-Threonine KinasesCrystallography X-RayMAP Kinase Kinase KinasesImmediate-Early ProteinsCSK Tyrosine-Protein KinaseMolecular Docking SimulationSmall Molecule Librariessrc-Family KinasesDrug DesignComputer SimulationProtein Kinase InhibitorsACS chemical biology
researchProduct